An In Depth View of Saliency
نویسندگان
چکیده
Visual saliency is a computational process that identifies important locations and structure in the visual field. Most current methods for saliency rely on cues such as color and texture while ignoring depth information, which is known to be an important saliency cue in the human cognitive system. We propose a novel computational model of visual saliency which incorporates depth information. We compare our approach to several state of the art visual saliency methods and we introduce a method for saliency based segmentation of generic objects. We demonstrate that by explicitly constructing 3D layout and shape features from depth measurements, we can obtain better performance than methods which treat the depth map as just another image channel. Our method requires no learning and can operate on scenes for which the system has no previous knowledge. We conduct object segmentation experiments on a new dataset of registered RGB-D images captured on a mobile-manipulator robot. Standard approaches to saliency use color, gradient, and intensity differences to distinguish unique regions from the rest of the visual field. We propose a novel method which incorporates depth measurements into the computation of visual saliency. Human subject studies have shown that depth is an important cue in determining salient regions in human visual processing [5, 6]. Depth measurements make it possible to separate objects which may be similar in appearance. In addition, shape information can be recovered from the depth channel and used to improve the discriminability of scene elements.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کامل3D Saliency Based on Supervoxels Rarity in Point Clouds
Visual saliency is a computational process that seeks to identify the most attention-drawing regions from a visual point of view. Most methods of salience are based on characteristics such as color, texture and more recently tried to introduce the depth information, which is known to be an important cue in the human cognitive system. We present a new full 3D mechanism of computational attention...
متن کاملDepth really Matters: Improving Visual Salient Region Detection with Depth
Depth information has been shown to affect identification of visually salient regions in images. In this paper, we investigate the role of depth in saliency detection in the presence of (i) competing saliencies due to appearance, (ii) depth-induced blur and (iii) centre-bias. Having established through experiments that depth continues to be a significant contributor to saliency in the presence ...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملJust Noticeable Difference Estimation Using Visual Saliency in Images
Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013